Atmega T245

Alternative open source controller for popular JBC T245 soldering iron using Atmega 328p micocontroller and P-Channel mosfet. The main goal for this project was to learn more about using different types of Mosfets for driving soldering iron heating elements. Atmega 328p can be programmed using Arduino IDE and this controller uses the same firmware source as Atmega Soldering Station by Stefan Wagner. It is not binary compatible because the original board uses N-Channel mosfet but this project uses P-Channel mosfet. There is a configuration option for selecting the correct mosfet version in the firmware source code.

Features

  • Based on Atmega 328p
  • Arduino code by wagiminator
  • P-Channel Mosfet
  • I2C OLED display support (two pinouts supported)
  • Buzzer
  • DC/DC step-down power supply
  • JBC T245 socket on the board
  • FTDI UART header for programming and debugging
  • 19-24V@5A DC power supply recommended
  • Header for connecting rotary encoder separately
  • 3,5mm terminal blocks for power and connecting soldering iron directly
  • Sides of the board can be cut off if not needed
  • Rotary encoder has some level of de-bounce resistance

Issues

  • When heating up fast sometimes the controller reboots (19V 4,5A laptop PSU)

Resources

Credits

Buy

  • Bare PCB: 3€

Notes and preferences

  • Atmega 328p MCU is very familiar for electronic hobbyist and Arduino support is good. Unfortunately this MCU is hard to source since 2022.
  • Eagle EDA free version for small projects is also very familiar for hobbyists and it’s file format is supported by many other packages.
  • JBC T245 iron is not as popular and cheap as Hakko T12 but the availability of handles and cartridges in EU is better. The maximum power is greater and internal resistance is lower.
  • Display, rotary encoder and socket for iron are on the same side of the board so that the board can be mounted on front of the box while PSU and power cord are on the back side.
  • P-FET on high-side is easier do drive but the efficiency is typically lower than on N-FETS.
  • N-FET on high-side needs a charge-pump circuitry to drive and while the N-FET itself has typically better efficiency the charge-pump is/seems to be not very efficient (diode and resistor gets hot)
  • DC-DC step-down converter allows greater input voltage range (48V with TD1466)
  • Single channel Op-amp is used to avoid extra resistors needed for two channel op-amps on the channels that are not used.
  • Series resistor and reverse diode on the input of the Op-Amp are used for the protection against possible voltage spikes from the iron.
  • Large ceramic input capacitor is smaller than electrolytic capacitor with same values would be but the ceramic capacitor “sings” audibly 
  • Parts are available either in EU (TME or Mouser) or China (LCSC).

Triple Base for WeMos

Triple base board for popular WeMos D1 (ESP8266) and WeMos S2 (ESP32) microcontroller boards and shields. Base board is designed for WeMos D1 boards but there is enough room on the sides to mount WeMos S2 with selected pin headers. There are prototyping areas between the double signal and power pins and rows of power pins (GND, 3.3V, 5V) on the bottom part of the board.

Features

  • Compatible with WeMos D1 (ESP8266) boards and shields
  • Partially compatible with WeMos S2 (ESP32) boards
  • Prototyping areas
  • Extra ground and power pins
  • Mounting holes
  • Headers are not included

Resources

Buy

  • Bare PCB: 5€

FTDI RX/TX Opto-Isolator

Simple Opto-Isolator board with only two channels to isolate RX and TX on UART communication lines. Both sides have FTDI style connectors but only GND, VCC and RX/TX are used. CTS and DTR are not connected. Also both sides need to have a separate power supply.

Features

  • FTDI style headers on both sides
  • Two channels – one in each direction
  • Speed up to 9600bps
  • Both sides need a separate power supply

Resources

Buy

  • Bare PCB: 3€
  • Pre-assembled: 10€

Serial OLED

Serial OLED is a small adapter board for cheap 128×64 0,96″ OLED i2c display module and it can be used as a serial console for microcontroller projects with 3.3V logic level. One of the four microswitches is hardwired as the reset for the Serial OLED board. Other three switches are connected to the digital pins of the on-board microcontroller. The additional FTDI connector (host) can be used to program the Serial OLED board itself.

There are two popular models of cheap 0,9″ OLED displays based on SSD1306 driver IC available on the ebay. They are slightly different size (27x27mm and 27x28mm) and the supply polarity is different. This adapter board fits both modules and the supply polarity for the OLED module can be set by the solder-jumpers.

Features

  • Compatible with 27x27mm and 27x28mm 0,9″ i2c OLED modules
  • OLED module supply voltage polarity set by solder-jumpers
  • Onboard Atmega-328p microcontroller
  • Logic level: 3.3V
  • Supply voltage: 5V
  • Reset switch
  • User assignable switches: 3

Resources

Buy

  • Bare PCB: 3€ 

FTDI Micro

FTDI Micro is simple USB to UART serial adapter based on FT232R chip. The board is pre-configured for 3.3V logic level but with the solder-jumper can be set to 5V logic level as well.

Features

  • Micro USB socket
  • USB UART interface chip: FT232R
  • Logic level: 3.3V default, 5V optional
  • USB port protection with polyfuse
  • TX LED: Red
  • RX LED: Green

Resources

Buy

  • Bare PCB: 3€